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Abstract. Experimentally determined coherent dynamic scattering functions for liquid bis- 
muth and lead are used to derive the van Hove correlation functions G(r,  t )  and Gs(r,  t ) .  It 
is demonstrated that it is possible to obtain direct and physically adequate information on 
the atomic self-motion from a neutron inelastic scattering measurement on a completely 
coherent scatterer. 

Since the advent of the neutron inelastic scattering technique very few attempts to derive 
the intermediate scattering function F(Q, t )  or the van Hove correlation function G(Y, t )  
from a measured dynamic scattering function S(Q,  CO) have been made. There are a 
number of reasons of technical nature that make this procedure complicated, one of 
which is the difficulty in measuring S(Q, w) for so large energy transfers that truncation 
errors have a negligible influence on the shape of the calculated F(Q, t) .  The feasibility 
of the procedure was first demonstrated by Brockhouse and Pope (1959) who derived 
G(r ,  t )  for liquid lead. However, both the higher neutron fluxes available today and 
large improvements in the efficiency of data correction procedures have since then 
continuously resulted in data of much higher quality. The first reliable determination of 
F(Q, t )  for a monatomic liquid was presented by Copley and Rowe (1974). Later, 
Mountain (1977) used the results of Skold et a1 (1972) to discuss the same quantity for 
liquid argon. 

Recently Dahlborg et a1 (1985) derived F(Q, t )  from measured S(Q, w) for liquid 
bismuth at 578 K (Dahlborg and Olsson 1982,1983) and liquid lead at 613 K (Soderstrom 
1981) using the extrapolation procedure to large energy transfers which was first used 
by Copley and Rowe (1974) for liquid rubidium. The procedure involves a fit of a sum 
of three Gaussian functions with w-dependent parameters to the measured part of 
S(Q, w) at constant Q-values. No physical significance, however, is attached to the 
choice of Gaussian functions to represent S(Q, U)  as distinct from the three Lorentzian 
fits used by the Delft group in their work on condensed inert gases (de Graaf (1989) and 
references therein). The dynamic scattering functions obtained through this fitting 
procedure are displayed in figure 1. The high quality of the data can be inferred from 
the smoothness of the three-dimensional surfaces in the w-direction. It is gratifying to 
note the special characteristic features of S(Q, U),  for example, the very pronounced 
shoulder on the high-Q side of the main peak and the distorted second peak of S ( Q )  for 
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Figure 1. Three-dimensional plot of S(Q, w )  for (a)  liquid bismuth at 578 K, and (b )  liquid 
lead at 613 K. 

bismuth, are clearly visible. It was further shown that the results on F(Q,  t )  obtained 
by use of the fitting procedure were actually smoothed versions of directly Fourier- 
transformed S ( Q ,  o) data and it is in this context justified to consider the results shown 
in figure 1 as experimental, especially as the zeroth and the second energy-moments of 
the fitted S ( Q ,  o) were very well satisfied. Also, the fourth energy-moment had very 
reasonable values from a physical point of view. Thus, it was concluded that the data 
were accurate enough to allow a more in-depth analysis and the derived F ( Q ,  t )  were 
subsequently used to obtain various memory functions (Soderstrom et a1 1985, Larsson 
and Gudowski 1986) of great interest for comparison with modern kinetic theories and 
with molecular dynamics (MD) simulations. A further step in the data analysis is taken 
here in that the van Hove correlation functions G(r, t )  and Gs(r, t )  are derived from 

The intermediate scattering function F( Q, t )  is related to the dynamic scattering 
function S ( Q ,  U )  obtained in a neutron inelastic scattering experiment on a monatomic 
liquid by 

F ( Q ,  0. 

F ( Q ,  t )  = 1 dw exp(iwt)S(Q, U). (1) 

Because of the simple analytical nature of the functions used to approximate S ( Q ,  U),  
F ( Q ,  t )  can be determined directly by use of equation (1). As an example of the shape 
of F ( Q ,  t ) ,  its Q-dependence at t = 0.2 ps is shown in figure 2. It should be noted that, 
irrespective of large difference in shape of the static structure factor S ( Q )  ( = F ( Q ,  t = 
0)) in liquid bismuth and lead, there is no significant difference in the decay of F ( Q ,  t )  
either with time or with Q, which indicates that the structural relaxation in a liquid metal 
to a large degree is independent of the actual structure both with respect to space and 
time. 

The van Hove correlation function G(r,  t ) ,  which can be naturally divided in two 
parts, a self part Gs(r, t )  and a distinct part Gd(r,  t ) ,  is obtained from F ( Q ,  t )  through 

G(r, t )  = G ,  ( r ,  t )  + G d  ( r ,  t )  = d Q  exp(i QR)F(Q, t). (2) 

Since the range of Q encompassed by the experimental results is limited ( S ( Q ,  U )  for 
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Figure 2. Derived F ( Q ,  t )  for (a )  liquid bismuth, and ( b )  liquid lead as functions of Q for t = 
0.2 ps. The points represent the experimental results and the full curve is a fit according to 
equation (3). 

bismuth was measured over 0.6 < Q < 7.2 A-' and for lead over 1.0 < Q < 6.8 A-'), 
it is obvious that, in order to perform the Fourier transfer, an extrapolation of the 
experimental data have to be made for times shorter than 0.5 ps and for large Q (cf figure 
2). At times beyond about 0.5 ps F ( Q ,  t )  has essentially decayed to zero within the 
measured Q-region. For small Q experimental data are also missing, but the contribution 
from this region to the Fourier transform is very small. 

From an inspection of the @dependence of the measured F ( Q ,  t )  it was found that 
a suitable expression for the extrapolation to large Q was 

F ( Q ,  t )  = F ( Q ,  t = 0) exp( - w ( t ) Q 2 )  (3) 

where w(t )  can be interpreted as a time-dependent width function. If the exponential 
term in equation (3) is identified with the self part of the intermediate scattering function 
F,(Q, t ) ,  the relation in equation (3) is identical to an earlier proposed scaling method 
to relate the coherent and the incoherent scattering functions (Rahman 1972). It should 
be emphasised that equation (3) violates the second sum rule of S ( Q ,  U ) .  However, in 
the short-time limit where w ( t )  = 0, the assumption is trivial and it is used here at short 
times for the purpose of extrapolation only and no physical significance is attached to it. 
It should also be mentioned that different analytical forms with no physical significance 
for the extrapolation of Q were tried, for example, an exponential decay. The difference 
in calculated G(r, t )  functions was very small. A fitting of equation (3) to the F ( Q ,  t )  
curves through the method of least squares results in the full curves in figure 2. It is seen 
that the calculated data do not describe the experimental results in detail but that the 
main features of the measured F ( Q ,  t )  are certainly well reproduced. As the oscillations 
in F(Q,  t )  have been almost completely damped out at the highest measured Q, the exact 
shape of the extrapolated part has no substantial impact on the detailed shape of the 
derived G(r, t )  except at times shorter than about 0.1 ps. Because of the limited energy 
range of the measured S ( Q ,  U ) ,  the assumption in equation (3) then merely adds to the 
uncertainty obtained by extrapolating the measured data to infinite neutron energy 
transfers. 

The obtained values of w( t )  are shown in figure 3. The first interesting feature is that 
the experimental points at short times very closely follow free-particle behaviour. The 
results from a MD simulation of Dzugutov (1989) and Dzugutov and Dahlborg (1989) 
also describe the experimental data reasonably well. In the MD simulation effective pair 
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Figure 3. The width function w(t )  (open circles) for (a) bismuth, and ( b )  lead. The full curves 
correspond to the MD results of Dzugutov 1989 and to Dzugutov and Dahlborg (1989) and 
the broken curves to w(t)  for a free atom. The crosses are the short-time results derived from 
Gs(r ,  t )  shown in full in figure 5 .  
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potentials obtained via a fitting procedure to a measured S(Q) was used. The MD results 
shown in figure 3 were subsequently obtained from the mean-square displacement 
curves. It is thus expected, and was also actually shown by Dzugutov and Dahlborg 
(1989), that the MD simulated S(Q, U )  describe the experimentally measured S(Q, w )  
very well. From a comparison of the experiment and the MD simulation it can be 
concluded that the approximative form for F(Q, t )  given in equation (3) can be used up 
to about 0.3 ps. Further discussion of the two different experimental data sets will be 
dealt with later. 

Some van Hove correlation functions at a number of selected time values, calculated 
numerically in accordance with equation (2) and for short times with the assumption 
given in equation (3) are shown in figure 4, for both liquid bismuth and lead. It should 
be pointed out that, contrary to the case in diffraction work, the integrand in the Fourier 
transform decays to zero within the measured Q-range, a fact which implies that the 
results for small r is also trustworthy in this case. The most obvious feature of the derived 
G(r,  t ) ,  namely its two-component nature where the self-part Gs(r, t )  centred around 
r = 0 and the distinct part Gd(r, t )  which fort = 0 is identical the pair distribution function 
g ( r )  is accordingly definitely reliable. Both G(r ,  t) components decay with time in the 
expected way. It has to be stressed in this connection that the experimental points in 
figure 4 have been calculated from the measured dynamic scattering function S(Q, o) 
for a completely coherent scatterer. This is the first time it has proven to be practically 
feasible to derive, to a reasonable degree of accuracy G(r, t )  and, especially Gs(r,  t) 
from such a measurement. It should though in this context be meniioned that neutron 
polarisation analysis can be used to separate S(Q, w) and S,(Q, w). This has recently 
been demonstrated for liquid sodium (Scharpf 1989). Concentrating first on the distinct 
part it is very gratifying, in view of the fact that the structure is rather slowly relaxing 
(compare the curves for t = 0.2 and t = 0.4 ps), to note that Gd(r, t = 0.2) has a shape 
which very closely resembles the curves obtained from a direct spatial Fourier trans- 
formation of the measured S ( Q )  both for bismuth (Dahlborg and Davidovic 1986) 
and for lead (Dahlborg et a1 1977). It can thus be concluded that neutron diffraction 
measurements that yield S(Q) and the inelastic ones that give S(Q, w )  form a consistent 
set of information both for bismuth and lead. From figure 4 it is obvious that at short 
times there is a pronounced difference in shape between Gd(r, t )  for bismuth and for 
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Figure 4. The shape of the pair correlation function C(r,  t )  for (a)  bismuth, and (b )  lead at 
differenttimes. Fullcurves,t = 0.2 ps; brokencurve,t = 0.4 ps;chaincurve,t = 1.Ops;open 
circles, t = 1.5 ps; crosses, t = 2.0 ps. 

lead. For bismuth a small but distinct subsidiary peak in G(r ,  t )  at about 4.5 A is visible. 
A similar peak has been found in other liquid semi-metals and it has been considered as 
a characteristic feature of g ( r )  for this type of liquid. There is also a slight indication that 
such a feature exists in lead. This actually agrees with earlier findings (Dahlborg et a1 
1977). 

Turning to Gs(r7 t ) ,  it is known that the full width at half maximum is a measure of 
the time evolution of the position of a single atom and as such it is a fundamental quantity 
in the theory of liquids. Even if the two components of G(r ,  t)  (as shown in figure 4) are 
merging together at long times, they can be separated unambiguously and the atomic 
mean square displacement (MSD) obtained from the width of Gs(r, t )  is shown in figure 5. 
The MD results of Dzugutov (1989) and Dzugutov and Dahlborg (1989) are also included. 
It is seen that the two sets of data agree satisfactorily at short and long times, somewhat 
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Figure 5. The mean square displacement (MSD) of an atom derived from the width of Gs(r,  t )  
for (a) bismuth, and (b)  lead. The full curves correspond to the MD results of Dzugutov 
(1989) and Dzugutov and Dahlborg (1989). 

better for bismuth than for lead. For bismuth it is actually possible to derive from the 
slope of the experimental data at long times a self-diffusion coefficient that agrees very 
well with the values obtained both from macroscopic measurements and from the MD 
simulation. This is the first time this has been demonstrated. At  intermediate times there 
is a significant discrepancy between the experimental and MD data. One possible reason 
for this is the relatively poor correction for the experimental resolution performed by 
Dahlborg eta1 (1985). A simple Gaussian function was assumed to describe the resolution 
and this assumption is not good enough in the medium energy region of S ( Q ,  o) where 
the shape of the tail of the resolution function has a significant impact on the transformed 
functions. There are more accurate ways to deconvolute the experimental resolution, 
for example using the routes advised by Verkerk (1982) and Philip and Soderstrom 
(1985). The present results clearly indicate that these routes have unfortunately to be 
taken at the expense of a much more complicated numerical analysis. It should, however, 
also be mentioned that in many cases there is a clear difference between the experi- 
mentally obtained and MD simulated S(Q, o) at intermediate neutron energy transfers 
(Copley and Rowe 1974, Kinell et a1 1985, Dzugutov and Dahlborg 1989) well outside 
the limits of error given for both. The reason for this discrepancy is unknown at present. 

The short-time part of the results on the atomic mean square displacement shown in 
figure 5 is also included in figure 3 in order to facilitate a comparison with the width 
function w( t )  obtained from the fitting of equation (3) to the experimental data. The 
agreement between the two sets of data up to at least 0.5 ps is striking. It is thus of 
fundamental interest to study whether Gs(r, t )  has a Gaussian shape or not. A convenient 
way for this is to investigate the product of the maximum value of Gs(r, t )  and its width 
at half maximum. If Gs(r, t )  is Gaussian, the value of the product should be equal to 
0.47. As is seen in figure 6 the obtained results are both for bismuth and for lead very 
close to this value. At  very short times the data, however, fall considerably above 0.47 
indicating that, especially for liquid lead, the extrapolation procedures used in the data 
treatment are not entirely accurate in this time region. For longer times there is a 
systematic variation in the data and it can be concluded that Gs(r, t )  is Gaussian in shape 
for times shorter than about 0.4 ps and for times longer than about 1.3 ps. The time 
region where the most non-Gaussian behaviour is seen in figure 6 agrees well with the 
recent MD simulations on another liquid metal, sodium (Kinell et a1 1985,1989) and also 
agrees reasonably well with the time limits obtained by Skold etal(l972) on liquid argon. 
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In this connection, however, it should be noted that even if the overall agreement 
between the results on S ( Q ,  U )  from neutron scattering and from MD simulation for 
liquid argon was very good there was a significant difference with regard to the time 
region of the non-Gaussian behaviour of S,(Q, 0). 

To conclude, it has been demonstrated above that it is possible to achieve fun- 
damental and physically adequate information both about the distinct motion of atoms 
and about their self-motion from a carefully performed experiment on completely 
coherent scatterers. The information was obtained directly in the form of van Hove 
correlation functions G(r, t )  and Gs(r, t )  and without the use of any models. This model- 
independent treatment is of great importance and certainly increases the value of 
the results. Some assumptions and approximations were nevertheless used during the 
numerical treatment, the most important being the fit of a sum of three Gaussian 
functions to the measured S(Q, U), but they have been found not to have any substantial 
impact on the magnitude or on the shape of the derived correlation functions. 
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